GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS
Authors
Abstract:
This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, the cost function is solved by Democratic Particle Swarm Optimization (DPSO) algorithm to achieve the optimal solution of the problem lead to damage identification. DPSO is a modified version of standard PSO algorithm which is developed for presenting a fast speed evolutionary optimization strategy. The applicability of the method is demonstrated by studying three numerical examples which consists of a ten-story shear frame, a plane steel truss and a plane steel frame. Several challenges such as the efficiency of the DPSO algorithm in comparison with other evolutionary optimization approaches for solving the inverse problem, impacts of random noise in input data on the reliability of the presented method, and effects of the number of available modal data for damage identification, are studied. The obtained results reveal good, robust and stable performance of the presented method for structural damage identification using only the first several modes’ data.
similar resources
Structural Damage Assessment Via Model Updating Using Augmented Grey Wolf Optimization Algorithm (AGWO)
Some civil engineering-based infrastructures are planned for the Structural Health Monitoring (SHM) system based on their importance. Identifiction and detecting damage automatically at the right time are one of the major objectives this system faces. One of the methods to meet this objective is model updating whit use of optimization algorithms in structures.This paper is aimed to evaluate the...
full textAn effective approach for damage identification in beam-like structures based on modal flexibility curvature and particle swarm optimization
In this paper, a computationally simple approach for damage localization and quantification in beam-like structures is proposed. This method is based on using modal flexibility curvature (MFC) and particle swarm optimization (PSO) algorithm. Analytical studies in the literature have shown that changes in the modal flexibility curvature can be considered as a sensitive and suitable criterion for...
full textA NEW APPROACH BASED ON FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL DAMAGE IDENTIFICATION
In this study, the finite element model updating was simulated by reducing the stiffness of the members. Due to lack of access to the experimental results, the data obtained from an analytical model were used in the proposed structural damage scenarios. The updating parameters for the studied structures were defined as a reduction coefficient applied to the stiffness of the members. Parameter v...
full textISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
full textAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
full textFinite element model updating of a geared rotor system using particle swarm optimization for condition monitoring
In this paper, condition monitoring of a geared rotor system using finite element (FE) model updating and particle swarm optimization (PSO) method is onsidered. For this purpose, employing experimental data from the geared rotor system, an updated FE model is obtained. The geared rotor system under study consists of two shafts, four bearings, and two gears. To get the experimental data, iezoel...
full textMy Resources
Journal title
volume 5 issue 4
pages 445- 464
publication date 2015-07
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023